|
因?yàn)楣ぷ鞯男枰?, 要在單片機(jī)上實(shí)現(xiàn)開(kāi)根號(hào)的操作。目前開(kāi)平方的方法大部分是用牛頓迭代法。我在查了一些資料以后找到了一個(gè)比牛頓迭代法更加快速的方法。不敢獨(dú)享,介紹給大家,希望會(huì)有些幫助。 1.原理 因?yàn)榕虐娴脑颍胮ow(X,Y)表示X的Y次冪,用B[0],B[1],...,B[m-1]表示一個(gè)序列, 其中[x]為下標(biāo)。 假設(shè): B[x],b[x]都是二進(jìn)制序列,取值0或1。 M = B[m-1]*pow(2,m-1) + B[m-2]*pow(2,m-2) + ... + B[1]*pow(2,1) + B[0]*pow (2,0) N = b[n-1]*pow(2,n-1) + b[n-2]*pow(2,n-2) + ... + b[1]*pow(2,1) + n[0]*pow (2,0) pow(N,2) = M (1) N的最高位b[n-1]可以根據(jù)M的最高位B[m-1]直接求得。 設(shè) m 已知,因?yàn)?pow(2, m-1) <= M <= pow(2, m),所以 pow(2, (m-1)/2) <= N <= pow(2, m/2) 如果 m 是奇數(shù),設(shè)m=2*k+1, 那么 pow(2,k) <= N < pow(2, 1/2+k) < pow(2, k+1), n-1=k, n=k+1=(m+1)/2 如果 m 是偶數(shù),設(shè)m=2k, 那么 pow(2,k) > N >= pow(2, k-1/2) > pow(2, k-1), n-1=k-1,n=k=m/2 所以b[n-1]完全由B[m-1]決定。 余數(shù) M[1] = M - b[n-1]*pow(2, 2*n-2) (2) N的次高位b[n-2]可以采用試探法來(lái)確定。 因?yàn)閎[n-1]=1,假設(shè)b[n-2]=1,則 pow(b[n-1]*pow(2,n-1) + b[n-1]*pow(2,n-2), 2) = b[n-1]*pow(2,2*n-2) + (b[n-1]*pow(2,2*n-2) + b[n-2]*pow(2,2*n-4)), 然后比較余數(shù)M[1]是否大于等于 (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4)。這種 比較只須根據(jù)B[m-1]、B[m-2]、...、B[2*n-4]便可做出判斷,其余低位不做比較。 若 M[1] >= (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 則假設(shè)有效,b[n-2] = 1; 余數(shù) M[2] = M[1] - pow(pow(2,n-1)*b[n-1] + pow(2,n-2)*b[n-2], 2) = M[1] - (pow(2,2)+1)*pow(2,2*n-4); 若 M[1] < (pow(2,2)*b[n-1] + b[n-2]) * pow(2,2*n-4), 則假設(shè)無(wú)效,b[n-2] = 0;余數(shù) M[2] = M[1]。 (3) 同理,可以從高位到低位逐位求出M的平方根N的各位。 使用這種算法計(jì)算32位數(shù)的平方根時(shí)最多只須比較16次,而且每次比較時(shí)不必把M的各位逐 一比較,尤其是開(kāi)始時(shí)比較的位數(shù)很少,所以消耗的時(shí)間遠(yuǎn)低于牛頓迭代法。 2. 流程圖 (制作中,稍候再上) 3. 實(shí)現(xiàn)代碼 這里給出實(shí)現(xiàn)32位無(wú)符號(hào)整數(shù)開(kāi)方得到16位無(wú)符號(hào)整數(shù)的C語(yǔ)言代碼。 ------------------------------------------------------------------------------- - /****************************************/ /*Function: 開(kāi)根號(hào)處理 */ /*入口參數(shù):被開(kāi)方數(shù),長(zhǎng)整型 */ /*出口參數(shù):開(kāi)方結(jié)果,整型 */ /****************************************/ unsigned int sqrt_16(unsigned long M) { unsigned int N, i; unsigned long tmp, ttp; // 結(jié)果、循環(huán)計(jì)數(shù) if (M == 0) // 被開(kāi)方數(shù),開(kāi)方結(jié)果也為0 return 0; N = 0; tmp = (M >> 30); // 獲取最高位:B[m-1] M <<= 2; if (tmp > 1) // 最高位為1 { N ++; // 結(jié)果當(dāng)前位為1,否則為默認(rèn)的0 tmp -= N; } for (i=15; i>0; i--) // 求剩余的15位 { N <<= 1; // 左移一位 tmp <<= 2; tmp += (M >> 30); // 假設(shè) ttp = N; ttp = (ttp<<1)+1; M <<= 2; if (tmp >= ttp) // 假設(shè)成立 { tmp -= ttp; N ++; } } return N; }
|